Post

Lumerical入门笔记

The FDTD(finite-difference time-domain) method(有限时域差分法)

  • Time-domain simulation
    • E and H fields are solved using a time-stepping algorithm
  • E and H fields are solved at discrete positions in space

Advantages of the FDTD method

  • 准确
  • 普适
  • 任意复杂形状
  • 宽谱结果

Simulation time and memory requirements

当器件在一个方向上为无限长时,可以使用x,y坐标进行仿真

 3D2D
Memory Requirements\(\sim V \cdot (\lambda/dx)^3\)\(\sim A \cdot (\lambda/dx)^2\)
Simulation Time\(\sim V \cdot (\lambda/dx)^4\)\(\sim A \cdot (\lambda/dx)^3\)

\(V\)​:仿真体积

\(A\):仿真面积

\((\lambda/dx)^3\):仿真密度

Boundary conditions

PML

  • Perfectly matched layer, absorbing boundary

Metal

  • Perfectly reflecting boundary

Periodic

  • Unit cell (structures and EM fields) contained in the simulation is repeated in the periodical direction (eg. source at normal incidence, along coordinate axes)

Bloch

  • Periodic with a phase shift between each unit cell

Symmetric/ anti-symmetric

  • Used to reduce the required stimulation volume when the structure and source have a plane of symmetry

Sources

  • Dispole 偶极子光源
  • Gaussian 高斯或大数值孔径(矢量)
  • Plane wave 平面波光源
  • Total-field scattered-field 全场散射场光源:主要用于散射、吸收、削光界面
  • Mode 波导模式光源
  • Import 自输入光源

Monitors

  • Refractive index 折射率:用于查看器件设置是否正确
  • Field time 时间:可以是点、线、面、立体的
  • Movie 电影:可以查看相互作用
  • Frequency-domain field profile/power 场分布/功率
  • Mode expansion 模式分解

Running a simulation

一般情况下,进度表显示不超过95%结束可以得到准确的频域结果

正常结束运行有两种方法:

  • 达到预先设置的Autoshutoff Min,强烈推荐
  • 达到预先设置的仿真时间

FDTD Solutions Workflow

  1. 创建物理结构
  2. 添加仿真区+边界
  3. 添加光源
  4. 添加监视器

Using Eigen Solver

  • 定义物理结构
  • 定义仿真区域
  • 频域分析

Basic Scripting

simple mathematics: plot some simple functions

1
2
3
4
5
6
7
8
> x = linspace(-10,10,500);
> y = sin(x);
> plot(x, y, "x", "y", "sin(x)");

> y = exp(-x^2/9)*sin(10*x);
> plot(x, y, "x", "y", "exp(-x^2/9)*sin(10*x)");

> ?size(x);

Advanced Scripting

  • 获得模式参数
1
2
?getdata("mode1");
% 参数是 surface_normal dimension f neff loss TE polarization fraction waveguide TE/TM fraction x y z Ex Ey Ez Hx Hy Hz
  • 获得频域曲线
1
2
?getdata("frequencysweep");
% 参数是 neff loss vg D beta f f_vg f_D mode_number

例如

1
f = getdata("frequencysweep", "f"); %得到频率

2.5D FDTD Propagator

How the FDTD method works

E and H are discrete in time \(\vec{E}(t) \rightarrow \vec{E}^{n\Delta t},\space \vec{H}(t) \rightarrow \vec{H}^{(n + \frac{1}{2})\Delta t}\) The basic FDTD time-stepping relation: \(\vec{E}^{n+1} = \vec{E}^{n} + \alpha \vec{\nabla} \times \vec{H}^{n+\frac{1}{2}}\)

\[\vec{H}^{n+\frac{3}{2}} = \vec{H}^{n+\frac{1}{2}} + \beta \vec{\nabla} \times \vec{E}^{n+1}\] \[\vec{H}^0 \rightarrow \vec{H}^\frac{1}{2} \rightarrow \vec{E}^1 \rightarrow \vec{H}^\frac{3}{2} \rightarrow ...\]

不会产生人为的增益/衰减

Using the time-domain propagator

  • 定义物理结构
  • 定义仿真区域
  • 添加光源
  • 添加监视器

Dispersive Material

  • 时域都是实数,频域是复数
  • 频域关系:\(\vec{D}(\omega) = \varepsilon(\omega)\vec{E}(\omega)\)
  • 时域关系:\(\vec{D}(t) = \varepsilon(t) \ast \vec{E}(t) = \int_0^t \vec{E}(t') \varepsilon(t - t')dt'\)

Sources

The propagator has a variety of sources available:

  • Dipole
  • Slab Gaussian beam (标量)
  • Slab plane wave
  • Mode
  • Total field/scattered field
  • Large Na source (矢量)
  • User-defined

FDTD is a time domain technique

\[\vec{E}(\omega) = \int_0^{T_{Sim}} e^{i \omega t} \vec{E}(t) dt\]

如果使用所谓“渐变”稳态场激励,就丧失了时域算法的优势

Tips

  • What mesh size should I use?
    • “Mesh accuracy” of 1 or 2 for initial setup (faster)
    • Use “meh accuracy” of 2-4 for final simulations
    • “Mesh accuracy” 5-8 is almost never necessary
  • How long a simulation time should I use?
    • Start with long simulations times and let the “auto-shutoff” feature find out when you can stop the simulation
    • Check with point time monitors
  • Avoid simulating homogeneous regions with no structure
  • 与FDTD Solutions不同,光源的偏振特性不能在光源那里修改

Solvers

FDE Solver

Can be used for 1D(slab) or 2D structure cross sections

Look for solutions to Maxwell’s equations of the form \(\vec{E}(x,y,z,\omega) = exp(i\beta_m z) \vec{E}_m(x,y,\omega)\)

\[\vec{H}(x,y,z,\omega) = exp(i\beta_m z) \vec{H}_m(x,y,\omega)\]

可计算的物理特性:

模式分布、群折射率、色散、弯曲损耗、耦合长度、重叠积分

varFDTD Solver

时域

Suitable for simulation of planar components including ring resonators, couplers, splitters, cross-overs, etc

3D planar waveguide geometry collapsed into 2D effective materials which capture material and waveguide dispersion.

应假设传播过程中在垂直方向几乎不改变

2D仿真速度但是接近3D仿真精度

EME Solver

频域

严格求解麦克斯韦方程

一次仿真可以获得多个模式输入和多个模式输出的结果

将波导器件沿一个方向分段,每段就是一个cell

When to use what solver

  • 平面类波导
    • 垂直方向上有耦合:EME
    • 没有垂直方向上耦合
      • 传播是全方向的:varFDTD
      • 沿一个方向传播:EME
  • 非平面类波导
    • 光栅类:EME
    • 光在垂直方向上有耦合的输入和输出:3D FDTD

Typical workflow

  1. 添加物理结构
  2. 添加仿真区域(EME中需要分段)
  3. 添加光源(EME中需要选输入输出端口、入射模式)
  4. 添加监视器
  5. 检查材料的拟合和内存需求
  6. 进行仿真
  7. 分析/输出
  8. 更改结构参数直到达到预期效果
This post is licensed under CC BY 4.0 by the author.